Agriculture
Where Have All the Bees Gone?
Watching out for vultures
Middle school science adventures
Amphibians
Newts
Tree Frogs
Salamanders and Newts
Animals
Who's Knocking?
Return of the Lost Limbs
A Jellyfish's Blurry View
Behavior
The Electric Brain
Wake Up, Sleepy Gene
A Light Delay
Birds
Albatrosses
Dodos
Falcons
Chemistry and Materials
Getting the dirt on carbon
A New Basketball Gets Slick
Popping to Perfection
Computers
Electronic Paper Turns a Page
The solar system's biggest junkyard
The Shape of the Internet
Dinosaurs and Fossils
Dino Bite Leaves a Tooth
A Big, Weird Dino
Middle school science adventures
E Learning Jamaica
2014 GSAT Results for Jamaican Kids
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
Results of GSAT are in schools this week
Earth
Plastic-munching microbes
Quick Quake Alerts
Pollution at the ends of the Earth
Environment
When Fungi and Algae Marry
Pumping Up Poison Ivy
Ready, unplug, drive
Finding the Past
An Ancient Childhood
A Long Trek to Asia
Stonehenge Settlement
Fish
Electric Catfish
Swordfish
Marlin
Food and Nutrition
In Search of the Perfect French Fry
Eat Out, Eat Smart
Recipe for Health
GSAT English Rules
Capitalization Rules
Order of Adjectives
Who vs. Whom
GSAT Exam Preparation Jamaica
How are students placed after passing the GSAT exam
Tarrant High overcoming the odds
Preparing for the GSAT Exam
GSAT Exams Jamaica Scholarships
Access denied - Disabled boy aces GSAT
GSAT Practice Papers | GSAT Mathematics | Maths
Results of GSAT are in schools this week
GSAT Mathematics
A Sweet Advance in Candy Packing
10 Common Mistakes When Preparing for the GSAT Math Test
GSAT Mathematics Quiz, Teaching Math, teaching anxiety
Human Body
Don't Eat That Sandwich!
Spit Power
From Stem Cell to Any Cell
Invertebrates
Ants
Scorpions
Grasshoppers
Mammals
Quokkas
Bats
Platypus
Parents
Expert report highlights the importance to parents of reading to children!
How children learn
What Not to Say to Emerging Readers
Physics
Einstein's Skateboard
Black Hole Journey
Dreams of Floating in Space
Plants
A Change in Leaf Color
City Trees Beat Country Trees
Hungry bug seeks hot meal
Reptiles
Lizards
Pythons
Alligators
Space and Astronomy
An Icy Blob of Fluff
The two faces of Mars
Ringing Saturn
Technology and Engineering
Musclebots Take Some Steps
Roll-Up Computer Monitors to Go
Drawing Energy out of Wastewater
The Parts of Speech
What is a Noun
Pronouns
What is a Preposition?
Transportation
Robots on the Road, Again
Ready, unplug, drive
Charged cars that would charge
Weather
In Antarctica watch the heat (and your step)
Arctic Melt
Recipe for a Hurricane
Add your Article

Tinkering With the Basic Bike

Bicycles are a great way to get around. They're fun to ride, especially down hills. And, as you whiz along the road, you might also think of ways in which you could improve your bikeómake it safer, more efficient, more comfortable, or more versatile. In fact, the two-wheeled machines make for some cool science projects. This year's Intel International Science and Engineering Fair (ISEF), held last May in Cleveland, featured three bicycle projects from three countries. Like many of the other experiments presented at ISEF, the bike projects showed that some of the most interesting scientific research often begins by taking a closer look at things you care about. One student from Oklahoma, for example, used computer programming to make a three-dimensional model of the movements of his pet spider. Two young women from Puerto Rico found evidence that playing violent video games raises people's blood pressure and heart rate, potentially making them angrier. Electricity bike Renato Angulo Chu had even grander ambitions. The 12th-grader from Lima, Peru, wanted to address some of his country's economic troubles. "I see a problem in my country," Renato said. "If you go to the forests in Peru, in some places you cannot find electricity. If you go with my bicycle, you can turn on the lights." Renato, 16, spent 3 years designing his special Multibike. The contraption looks like a stationary exercise bike. It has wires strung along the frame and a blender strapped to the back. Turning the pedals operates the blender. The same principle can be used to sharpen knives or sweep city streets. The Multibike can work either as a stationary bike or as a bicycle able to travel city streets and country roads. It's made from inexpensive materials, and the user gets exercise while pedaling to operate a machine. "You pedal the bike, and you can mix any drink you want," Renato said. More importantly, he added, the same concept could be used to bring light to houses in remote regions of the rainforest. Where's the chain? Ronak Tak and Anish Menon, two high school seniors from Jaipur, India, just wanted to find a more efficient way to get around. "In our country, 95 percent of people use bicycles as their main means of transportation," said Anish, who rides his bike about 4 kilometers to school every day. Ronak added, "We wanted to do an experiment that was . . . beneficial for the common man." So, the 17-year-olds invented a chainless bicycle. A bicycle's chain creates problems, the students said. Without regular oiling, it can rust, reducing the bike's efficiency. When it's oiled, there's the nuisance of stains when hands or clothing touch the chain. Ronak and Anish started by removing the chain assembly from an ordinary bike. Then, they used rods (or shafts) to connect the pedals and the wheel. Their new axle-rod assembly resembled that found in trucks and buses. When the pedals rotate, the rod moves, which in turn rotates the bicycle's wheel. The result is much more efficient than a regular bike, Anish said. "It feels more comfortable. The stress on your legs is reduced. You can go a much longer distance using the same number of pedals." Ronak added, "It's compact. It's durable. You don't have to worry about getting grease on your pants." To put numbers where their mouths were, Ronak and Anish did laboratory tests to compare their chainless prototype with a regular bike. They applied equal amounts of force to both bikes in rotating the pedals one full time around. Using an instrument called a tachometer, they measured how fast the rear wheel spun. In test after test, the chainless bike outperformed the chain-equipped bike. Without the resistance of a chain, the back wheel rotated an average of 66 times in a 30-second trial. With a chain, the rear wheel made it around only an average of 47 times. That difference could shave up to 5 minutes off a 30-minute journey, the inventors estimated. So "shift to shaft" has become their motto. And they plan to make more. "When we first explained our idea, some people said, 'You are totally mad,'" Ronak said. "But we never quit. Quitters never win." Racing wheels Winning is exactly what Mackenzie LaRoe likes to do. The 15-year-old triathlete from Eustis, Fla., is ranked seventh in the country in the Junior Elite division of her rigorous sport, which combines running, swimming, and cycling. The high school freshman is also an aspiring scientist who made it to ISEF with an experiment designed to identify the fastest wheels for her bike. She tested three types: a regular set of wheels; a set of racing wheels with fewer spokes; and a set of specialty wheels with a spokeless disk for a rear wheel and only three wide spokes in the front wheel. For each wheel set, Mackenzie did six trials. She used the same bicycle, wore the same clothes, and held the same body position. In each trial, she coasted down the same hill for about half a mile. The only variable was the wind. Her father helped her time each trial (and drove her back up the hill). Each time, she recorded her maximum speed and her average speed. Results matched her expectations: The fastest wheels were the ones with the fewest spokes. On the specialty set, she averaged 42.72 kilometers per hour, compared with 39.89 km/h and 42.15 km/h for the first two. I suggested she might want to try one of Ronak and Anish's ultraefficient chainless bikes for her next race. She hadn't seen the invention, but she had heard about it. "I'd have to see what it's like," she said. "That'd be something to try, but races usually have restrictions about bicycle specifications." Lessons learned None of the bike projects took home any of the big prize money presented at ISEF this year. But their designers learned plenty of surprising things. Renato saw how exercise might power a village. Mackenzie learned that science can be fun, especially when it involves cruising down hills at 40 km/h all afternoon. "It was exhilarating!" she said. "I wasn't in the lab all day long." Studying bikes can even bring a little fame, Ronak and Anish discovered. They have been riding their chainless prototype around Jaipur so much that many of the city's 3 million residents now recognize them when they pass. "We're famous in our city," Ronak said. "When we go by, everyone says 'There goes the chainless bicycle!'"

Tinkering With the Basic Bike
Tinkering With the Basic Bike








Designed and Powered by HBJamaica.com™