Agriculture
Vitamin D-licious Mushrooms
Silk’s superpowers
Watering the Air
Amphibians
Tree Frogs
Newts
Salamanders and Newts
Animals
A Meal Plan for Birds
Koalas, Up Close and Personal
Baboons Listen for Who's Tops
Behavior
Monkeys in the Mirror
Making light of sleep
Diving, Rolling, and Floating, Alligator Style
Birds
Cardinals
Geese
Parakeets
Chemistry and Materials
The Incredible Shrunken Kids
Revving Up Green Machines
Scientist Profile: Wally Gilbert
Computers
Troubles with Hubble
Graphene's superstrength
Computers with Attitude
Dinosaurs and Fossils
An Ancient Feathered Biplane
Hall of Dinos
Meet the new dinos
E Learning Jamaica
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
2014 GSAT Results for Jamaican Kids
Results of GSAT are in schools this week
Earth
Undersea Vent System Active for Ages
The Rise of Yellowstone
Hints of Life in Ancient Lava
Environment
A Stormy History
Acid Snails
Where rivers run uphill
Finding the Past
A Volcano's Deadly Ash
The Taming of the Cat
Fakes in the museum
Fish
Tiger Sharks
Marlin
Angler Fish
Food and Nutrition
The mercury in that tuna
The Essence of Celery
Symbols from the Stone Age
GSAT English Rules
Finding Subjects and Verbs
Problems with Prepositions
Adjectives and Adverbs
GSAT Exam Preparation Jamaica
March 21-22, 2013: Over 43,000 students will take the GSAT Exam
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
GSAT Exam Preparation
GSAT Exams Jamaica Scholarships
42,000 students will sit for the GSAT Exam in two weeks
Results of GSAT are in schools this week
2014 GSAT Results for Jamaican Kids
GSAT Mathematics
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
How a Venus Flytrap Snaps Shut
A Sweet Advance in Candy Packing
Human Body
Hear, Hear
Gut Microbes and Weight
A Fix for Injured Knees
Invertebrates
Sea Urchin
Butterflies
Cockroaches
Mammals
Bumblebee Bats
Capybaras
Shih Tzus
Parents
Expert report highlights the importance to parents of reading to children!
Raise a Lifelong Reader by Reading Aloud
Children and Media
Physics
Dreams of Floating in Space
Speedy stars
Hold on to your stars, ladies and gentlemen
Plants
Springing forward
Fastest Plant on Earth
Flower family knows its roots
Reptiles
Caimans
Reptiles
Tortoises
Space and Astronomy
An Earthlike Planet
Slip-sliding away
The two faces of Mars
Technology and Engineering
Squeezing Oil from Old Wells
Morphing a Wing to Save Fuel
Weaving with Light
The Parts of Speech
What is a Verb?
Pronouns
Adjectives and Adverbs
Transportation
Ready, unplug, drive
Revving Up Green Machines
How to Fly Like a Bat
Weather
Antarctica warms, which threatens penguins
Polar Ice Feels the Heat
Science loses out when ice caps melt
Add your Article

The Mirror Universe of Antimatter

Had a fight with your parents or a bad day at school? Wouldn't it be nice to step through a mirror to enter a different, yet somehow familiar world on the other side? In some ways, this might not be such a farfetched idea. Physicists around the world are using high-tech machines to make particles of so-called antimatter. They think of antiparticles as mirror images of the particles that make up everything in our everyday world. Just as you look like your image in a mirror, except that right and left are interchanged, a particle and its antiparticle are identical, except that they have opposite electrical charges. The research probably won't turn up anything exotic—certainly nothing like a galactic wormhole that would let you slip instantly from one part of the universe to another. Studying antimatter, however, could help scientists understand the origins and makeup of the universe. And particles of antimatter already play an important part in medical equipment used to scan the brain to monitor mental activity. Ordinary matter Few people—and most of them are cutting-edge physicists—have ever seen antimatter. The rest of us are much more familiar with matter. Air, water, a table, the TV—you name it—everything we see, touch, eat, drink, and breathe is made up of tiny objects called atoms. Atoms, in turn, are made up of even tinier particles: electrons, protons, and neutrons. Electrons have a negative electrical charge, and protons have a positive electrical charge. Neutrons have no electrical charge. A typical atom is made up of an equal number of electrons and protons, along with some neutrons. The number of protons in an atom determines what kind of atom it is. A hydrogen atom, for example, consists of just one proton and one electron. Each type of particle has an elusive anti-partner. An antiproton is just like a proton, except that it has a negative charge. A positron is just like an electron, except that it has a positive charge. However, when a proton meets an antiproton or an electron meets a positron, the particles destroy each other, disappearing in a puff of energy. As bizarre as the concept may sound, scientists have known about antiparticles for decades. "When I talk about antimatter to my colleagues, they are not very excited about it. They say, 'Okay, so what's new? What are you doing with it?'" says Rolf Landua, a physicist at CERN in Geneva, Switzerland. "When I talk to nonphysicists about it, they look at me with great eyes and say, 'God, it sounds so exotic.'" Making antimatter At CERN, Landua works with a group called the ATHENA collaboration. These physicists were the first to succeed in linking positrons with antiprotons to make atoms of antihydrogen—the simplest anti-atom. In theory, the process of making antimatter is fairly simple, though the equipment needed to do it can be very complicated (and expensive). Scientists at CERN use a one-of-its-kind machine to make antiparticles. When created, these antiparticles typically have a whole lot of energy. Inside the machine, they zoom along circular tunnels, making a million circuits every second. But on each lap, the tiny objects pass through magnetic and electric fields that slow them down. Once the antiparticles have stopped moving, the researchers can store and then combine them. "We now have the first antiatom ever produced by humans," Landua says. "That's the new thing about our experiment." Beginning of time Besides being mind-bafflingly strange, human-made bits of antimatter may provide windows into the very beginning of time. One of the big mysteries of the universe, Landua says, is that it doesn't appear to contain any antimatter. "You probably don't spend sleepless nights wondering about why that is," he says. "But physicists do." Here's one reason for pondering antimatter. Many physicists think that, if the universe started with a giant burst of energy called the Big Bang, it should have produced equal amounts of matter and antimatter. But, whenever matter meets antimatter, the particles annihilate each other and disappear. So, during the very first millisecond after the Big Bang, the two types of particles should have canceled each other out. Instead, perhaps because there was slightly more matter than antimatter in the beginning, only the antimatter disappeared, and our matter-full universe was able to form out of the leftovers. Landua and his colleagues want to find out what might have caused an imbalance. "We study anti-atoms, and we compare them with atoms to see if there are any differences—even the tiniest ones," Landua says. "This is a big question because, if there was no [imbalance] between matter and antimatter, we wouldn't exist." Slow going Progress is slow. With current technology, ATHENA researchers can make 100 antihydrogen atoms every second. At that rate, making 1 gram of the stuff would take many billions of years—longer than the age of the universe itself. It's also extremely hard to store antimatter because it gets destroyed as soon as it comes into contact with matter, which is everywhere. The researchers are trying to figure out how to make more antiatoms faster, trap them better, and hold onto them for longer periods of time. The possibility also remains that some chunk of antimatter might exist elsewhere in outer space in the form of anti-stars or antigalaxies, Landua says. So far, searches of our universe have turned up nothing, but Landua hasn't given up hope. "There may be other universes we cannot look into where there is a preponderance of antimatter," he says. "At least here, in our section of the universe, it doesn't seem like it. This is the mystery." So, being able to step into an alternative mirror universe to get away from your troubles will probably remain a long shot for a long time to come.

The Mirror Universe of Antimatter
The Mirror Universe of Antimatter








Designed and Powered by HBJamaica.com™