Agriculture
Earth-Friendly Fabrics
Vitamin D-licious Mushrooms
Springing forward
Amphibians
Toads
Bullfrogs
Poison Dart Frogs
Animals
Bee Heat Cooks Invaders
Baboons Listen for Who's Tops
Missing Moose
Behavior
World’s largest lizard is venomous too
The chemistry of sleeplessness
Baby Number Whizzes
Birds
Eagles
Hawks
Penguins
Chemistry and Materials
Cold, colder and coldest ice
Atom Hauler
Batteries built by Viruses
Computers
Nonstop Robot
The Book of Life
Seen on the Science Fair Scene
Dinosaurs and Fossils
Meet your mysterious relative
Dinosaur Dig
Dinosaurs Grow Up
E Learning Jamaica
2014 GSAT Results for Jamaican Kids
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
Results of GSAT are in schools this week
Earth
Snowflakes and Avalanches
Arctic Algae Show Climate Change
Wave of Destruction
Environment
Plastic Meals for Seals
The Best Defense Is a Good Snow Fence
Improving the Camel
Finding the Past
Of Lice and Old Clothes
If Only Bones Could Speak
Unearthing Ancient Astronomy
Fish
Dogfish
Tilapia
Marlin
Food and Nutrition
The Color of Health
Healing Honey
The Essence of Celery
GSAT English Rules
Capitalization Rules
Order of Adjectives
Who vs. Whom
GSAT Exam Preparation Jamaica
GSAT Exam Preparation
42,000 students will sit for the GSAT Exam in two weeks
Ministry of Education Announces 82 GSAT Scholarships for 2010
GSAT Exams Jamaica Scholarships
42,000 students will sit for the GSAT Exam in two weeks
GSAT stars reap scholarship glory
2014 GSAT Results for Jamaican Kids
GSAT Mathematics
GSAT Mathematics Quiz, Teaching Math, teaching anxiety
Losing with Heads or Tails
Math Naturals
Human Body
Germ Zapper
Walking to Exercise the Brain
A Better Flu Shot
Invertebrates
Millipedes
Nautiluses
Worms
Mammals
Manatees
Grizzly Bear
Beavers
Parents
Expert report highlights the importance to parents of reading to children!
Children and Media
How children learn
Physics
Spin, Splat, and Scramble
Powering Ball Lightning
Speedy stars
Plants
When Fungi and Algae Marry
Fast-flying fungal spores
Assembling the Tree of Life
Reptiles
Sea Turtles
Iguanas
Gila Monsters
Space and Astronomy
Pluto, plutoid: What's in a name?
Baby Star
A Planet's Slim-Fast Plan
Technology and Engineering
Slip Sliming Away
Switchable Lenses Improve Vision
Weaving with Light
The Parts of Speech
What is a Noun
What is a Verb?
Adjectives and Adverbs
Transportation
Robots on a Rocky Road
Charged cars that would charge
Morphing a Wing to Save Fuel
Weather
Warmest Year on Record
Either Martians or Mars has gas
Antarctica warms, which threatens penguins
Add your Article

Roboroach and Company

Robots are machines. People build and program them to assemble cars, vacuum floors, or do other tasks. Some venture into dangerous places, such as volcanoes and minefields, where people can't go safely. Others guard warehouses or simply serve as pets. Many robots have sensors to detect what's happening around them. They process this information and react to what they detect. Scientists and engineers have observed that animals can move and respond in ways that people can't. Dogs, for example, can hear high-pitched sounds that people can't hear and smell odors no human nose can detect. Octopuses use a form of jet propulsion to get around and can cram themselves into tiny spaces (see "Walktopus"). So, it makes sense for researchers interested in robots to learn more about how animals interact with the world around them (see "A Sense of Danger"). Using animals, such as cockroaches and lobsters, as models, they can then try to create robots to do even more things that people can't do. Roach navigation Why would you study a bug to build a robot? Cockroaches are really good movers, says Noah Cowan. He's a professor of mechanical engineering at Johns Hopkins University in Baltimore. Roaches run amazingly quickly for their size. They can dash about in total darkness, creep into tiny crevices, and get around all kinds of obstacles (including the shoes and flyswatters of people trying to squish them). Because they move so well in difficult conditions, cockroaches could teach engineers how to build robots that can navigate in tight and unlit spaces. A cockroach has two long antennas with thousands of sensors along each one. Cowan and researchers in his lab focused on how a cockroach uses its antennas to steer. To find out, they first blindfolded cockroaches and placed them in a dimly lit chamber. Then they used a camera to film exactly how the cockroaches used their antennas as they moved. It turns out that a cockroach can tell how far it is from a wall by how much its antennas curve as they brush against the obstacle. The insect can then adjust its movements accordingly. It's the same idea as using your hand as a guide when you walk down a dark hallway. But because your hand isn't designed for sensing distance, you probably can't move as fast as a cockroach. To apply this idea, Cowan and his coworkers built a cockroach-like antenna for a small robot with wheels. Their antenna is made of flexible plastic, which allows it to bend as the robot moves and touches its surroundings. The antenna is also equipped with several strain gauges. Strain gauges measure how much an object bends. Measurements go from the strain gauges to a computer. A computer program then translates the bending data into distance information that the robot can use to tell how far it is from a wall. Although it has far fewer antenna sensors and moves more slowly than a cockroach does, the robot steers itself along curves and around obstacles—just like a cockroach in the kitchen. Cowan isn't the only robotics researcher who has studied cockroaches to build better robots. Several teams, for example, have created six-legged robots that imitate the way a roach moves it legs, scampers over rough terrain, or evades obstacles. One group has built a roach-inspired machine that climbs walls. Another group has even designed a little mobile robot that's driven by a live cockroach. Underwater smells Like cockroaches, American lobsters have antenna structures that they use to sense the world around them. They also have a second pair of projections on their heads, usually shorter and stubbier than antennas, called antennules. Using these antennules, lobsters have a particularly good sense of smell, says Frank Grasso. He's a psychology professor at Brooklyn College. A lobster's sense of smell is based on tracking chemicals in the water, and it uses this ability to find food such as clams. Grasso and his team have spent a great deal of time learning how lobsters trace the odor of food to its source. This information has helped them design, build, and program robots that track the amount of various chemicals in water to their source in the same way that a lobster does. One resulting robot, named Wilbur, doesn't look much like a lobster. But it's mobile and has sensors that respond to the presence of certain chemicals. The researchers have tested their "robolobsters" under realistic conditions in the Red Sea. Although they probably weren't analyzing and responding to smells in exactly the same way that lobsters do, the robots still managed to work as well in the ocean as they do under controlled conditions in the lab. Such robots may eventually be used to track and pinpoint underwater sources of pollution, detect and locate unexploded mines and bombs, and look for deep-sea vents and other ocean features. A firm grasp Another good model for a robot might be the slipper lobster. Slipper lobsters are covered with large plates and don't have claws. They're also not as fast as their American lobster and spiny lobster cousins. "These guys are like Eeyore—slow-moving and lethargic," Grasso says. "They can go months without eating a clam." But when they're hungry, slipper lobsters walk up to a clam and poke it with their sharp, pointed legs. Without looking, they pick up the clam, turn it to the right position, and put pressure on it to open the shell. Sometimes, they cut a small notch in the shell and pry it open with one of their legs. Slipper lobsters are a good model for how people grasp and hold things, Grasso says. In the same way that a person has 10 fingers, a slipper lobster has 10 fingerlike hinges (its legs and the plates). Because a slipper lobster handles clams from the underside of its body, it has to rely on its sense of touch. To do so, it needs to know the position of each leg at all times. If he could build a robot that could open clams the way a slipper lobster does, he could apply the technology to many other problems, Grasso says. One result could be an improved artificial hand or a robot that can grasp and manipulate objects with little direction from people. Imitating nature Cowan and Grasso are just two members of a large group of researchers who are studying animals to help design, build, and program robots with superhuman abilities. They're learning a great deal about the animals themselves, and they're creating ingenious machines that do amazing things. Developing such robots could lead to the rescue machines of the future. Roboroach could use its antennas to feel its way around obstacles at a disaster scene; robolobster could smell smoke or detect a toxic chemical and follow it to its source. With such help, firefighters and other rescue personnel might be able to save lives without getting hurt themselves.

Roboroach and Company
Roboroach and Company








Designed and Powered by HBJamaica.com™