Agriculture
Silk’s superpowers
Hungry bug seeks hot meal
Fast-flying fungal spores
Amphibians
Poison Dart Frogs
Newts
Bullfrogs
Animals
Monkeys Count
Crocodile Hearts
Vampire Bats on the Run
Behavior
Nice Chimps
A brain-boosting video game
Meet your mysterious relative
Birds
Ducks
Turkeys
Birds We Eat
Chemistry and Materials
Supersonic Splash
Bandages that could bite back
The Incredible Shrunken Kids
Computers
A New Look at Saturn's rings
Getting in Touch with Touch
Programming with Alice
Dinosaurs and Fossils
From Mammoth to Modern Elephant
Hunting by Sucking, Long Ago
Dino-bite!
E Learning Jamaica
Results of GSAT are in schools this week
2014 GSAT Results for Jamaican Kids
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
Earth
A Volcano Wakes Up
Rodent Rubbish as an Ice-Age Thermometer
In Antarctica watch the heat (and your step)
Environment
What is groundwater
Catching Some Rays
A Newspaper's Hidden Cost
Finding the Past
If Only Bones Could Speak
Settling the Americas
Chicken of the Sea
Fish
Nurse Sharks
Puffer Fish
Salmon
Food and Nutrition
Food for Life
Recipe for Health
How Super Are Superfruits?
GSAT English Rules
Subject and Verb Agreement
Order of Adjectives
Capitalization Rules
GSAT Exam Preparation Jamaica
Ministry of Education Announces 82 GSAT Scholarships for 2010
How are students placed after passing the GSAT exam
March 21-22, 2013: Over 43,000 students will take the GSAT Exam
GSAT Exams Jamaica Scholarships
Access denied - Disabled boy aces GSAT
42,000 students will sit for the GSAT Exam in two weeks
GSAT stars reap scholarship glory
GSAT Mathematics
Math is a real brain bender
Prime Time for Cicadas
Losing with Heads or Tails
Human Body
The tell-tale bacteria
A Long Haul
Walking to Exercise the Brain
Invertebrates
Tarantula
Jellyfish
Crustaceans
Mammals
Glider
St. Bernards
Pitbulls
Parents
Raise a Lifelong Reader by Reading Aloud
What Not to Say to Emerging Readers
Expert report highlights the importance to parents of reading to children!
Physics
Invisibility Ring
Powering Ball Lightning
Electric Backpack
Plants
City Trees Beat Country Trees
Underwater Jungles
Pumping Up Poison Ivy
Reptiles
Snapping Turtles
Gila Monsters
Geckos
Space and Astronomy
Dark Galaxy
Catching a Comet's Tail
Slip-sliding away
Technology and Engineering
Supersuits for Superheroes
Sugar Power for Cell Phones
Algae Motors
The Parts of Speech
Pronouns
What is a Verb?
Adjectives and Adverbs
Transportation
Revving Up Green Machines
Robots on the Road, Again
How to Fly Like a Bat
Weather
Warmest Year on Record
Catching Some Rays
Either Martians or Mars has gas
Add your Article

Not Slippery When Wet

A gecko has amazingly sticky feet (see "How a Gecko Defies Gravity"). In fact, if you pull hard enough on a gecko stuck to a glass plate, you might break the plate. A tree frog's foot doesn't have so powerful a grip, but it still must allow the frog to climb wet, slippery leaves—sometimes while the frog is upside down. Now, scientists have figured out how a tree frog manages to keep its grip. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A gecko's feet have inspired a new type of adhesive tape (see "Sticking Around with Gecko Tape"). If engineers can figure out how to imitate a tree frog's foot, we might someday have car tires that stick to the road even when the road's wet.—E. Jaffe

Not Slippery When Wet
Not Slippery When Wet








Designed and Powered by HBJamaica.com™