Agriculture
Where Have All the Bees Gone?
Flush-Free Fertilizer
Chicken Eggs as Drug Factories
Amphibians
Toads
Salamanders
Newts
Animals
Baboons Listen for Who's Tops
Monkeys Count
Crocodile Hearts
Behavior
Bringing fish back up to size
Giving Sharks Safe Homes
The Disappearing Newspaper
Birds
Mockingbirds
Cardinals
Emus
Chemistry and Materials
Sweeeet! The Skinny on Sugar Substitutes
The Taste of Bubbles
A Butterfly's Electric Glow
Computers
Supersonic Splash
Music of the Future
The Shape of the Internet
Dinosaurs and Fossils
Teeny Skull Reveals Ancient Ancestor
A Living Fossil
Some Dinos Dined on Grass
E Learning Jamaica
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
2014 GSAT Results for Jamaican Kids
Results of GSAT are in schools this week
Earth
Coral Islands Survive a Tsunami
Rodent Rubbish as an Ice-Age Thermometer
A Global Warming Flap
Environment
Antarctica warms, which threatens penguins
Giant snakes invading North America
The Wolf and the Cow
Finding the Past
Preserving Ancient Warrior Paint
Your inner Neandertal
Stone Age Sole Survivors
Fish
Mako Sharks
Catfish
Tiger Sharks
Food and Nutrition
The mercury in that tuna
Food for Life
Sponges' secret weapon
GSAT English Rules
Finding Subjects and Verbs
Pronouns
Adjectives and Adverbs
GSAT Exam Preparation Jamaica
42,000 students will sit for the GSAT Exam in two weeks
Mastering The GSAT Exam
Tarrant High overcoming the odds
GSAT Exams Jamaica Scholarships
GSAT Exam Preparation
GSAT stars reap scholarship glory
Access denied - Disabled boy aces GSAT
GSAT Mathematics
GSAT Mathematics Quiz, Teaching Math, teaching anxiety
Setting a Prime Number Record
GSAT Practice Papers | GSAT Mathematics | Maths
Human Body
Spitting Up Blobs to Get Around
Sleeping Soundly for a Longer Life
A Fix for Injured Knees
Invertebrates
Octopuses
Invertebrates
Lobsters
Mammals
Siberian Husky
African Hippopotamus
Grizzly Bear
Parents
Raise a Lifelong Reader by Reading Aloud
Choosing a Preschool: What to Consider
Children and Media
Physics
The Pressure of Scuba Diving
One ring around them all
Extra Strings for New Sounds
Plants
Stalking Plants by Scent
Fastest Plant on Earth
A Giant Flower's New Family
Reptiles
Iguanas
Cobras
Garter Snakes
Space and Astronomy
A Dusty Birthplace
A Very Distant Planet Says "Cheese"
Rover Makes Splash on Mars
Technology and Engineering
Toy Challenge
Musclebots Take Some Steps
Riding Sunlight
The Parts of Speech
What is a Preposition?
What is a Noun
Adjectives and Adverbs
Transportation
Morphing a Wing to Save Fuel
Charged cars that would charge
Are Propellers Fin-ished?
Weather
Polar Ice Feels the Heat
Science loses out when ice caps melt
Where rivers run uphill
Add your Article

Not Slippery When Wet

A gecko has amazingly sticky feet (see "How a Gecko Defies Gravity"). In fact, if you pull hard enough on a gecko stuck to a glass plate, you might break the plate. A tree frog's foot doesn't have so powerful a grip, but it still must allow the frog to climb wet, slippery leaves—sometimes while the frog is upside down. Now, scientists have figured out how a tree frog manages to keep its grip. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A gecko's feet have inspired a new type of adhesive tape (see "Sticking Around with Gecko Tape"). If engineers can figure out how to imitate a tree frog's foot, we might someday have car tires that stick to the road even when the road's wet.—E. Jaffe

Not Slippery When Wet
Not Slippery When Wet








Designed and Powered by HBJamaica.com™