Agriculture
Chicken Eggs as Drug Factories
Treating peanut allergy bit by bit
Where Have All the Bees Gone?
Amphibians
Frogs and Toads
Tree Frogs
Bullfrogs
Animals
New Mammals
Saving Africa's Wild Dogs
Ultrasonic Frogs Raise the Pitch
Behavior
Wired for Math
Mosquito duets
Lost Sight, Found Sound
Birds
Flamingos
Storks
Quails
Chemistry and Materials
Nanomagnets Corral Oil
Earth from the inside out
Sugary Survival Skill
Computers
Games with a Purpose
Play for Science
Lighting goes digital
Dinosaurs and Fossils
From Mammoth to Modern Elephant
Three strikes wiped out woolly mammoths
A Dino King's Ancestor
E Learning Jamaica
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
Results of GSAT are in schools this week
2014 GSAT Results for Jamaican Kids
Earth
Distant Quake Changes Geyser Eruptions
Earth's Lowly Rumble
Snowflakes and Avalanches
Environment
Alien Invasions
A Change in Leaf Color
Island Extinctions
Finding the Past
Settling the Americas
Your inner Neandertal
Ancient Art on the Rocks
Fish
Dogfish
Trout
Mahi-Mahi
Food and Nutrition
The Color of Health
Yummy bugs
Food for Life
GSAT English Rules
Capitalization Rules
Pronouns
Adjectives and Adverbs
GSAT Exam Preparation Jamaica
March 21-22, 2013: Over 43,000 students will take the GSAT Exam
How are students placed after passing the GSAT exam
Mastering The GSAT Exam
GSAT Exams Jamaica Scholarships
Results of GSAT are in schools this week
Access denied - Disabled boy aces GSAT
GSAT Practice Papers | GSAT Mathematics | Maths
GSAT Mathematics
Detecting True Art
GSAT Practice Papers | GSAT Mathematics | Maths
How a Venus Flytrap Snaps Shut
Human Body
A Long Haul
A Better Flu Shot
Football Scrapes and Nasty Infections
Invertebrates
Corals
Squid
Praying Mantis
Mammals
Canines
Rottweilers
Jaguars
Parents
Expert report highlights the importance to parents of reading to children!
What Not to Say to Emerging Readers
How children learn
Physics
One ring around them all
Invisibility Ring
The Pressure of Scuba Diving
Plants
Farms sprout in cities
Springing forward
Fast-flying fungal spores
Reptiles
Chameleons
Box Turtles
Asp
Space and Astronomy
A Star's Belt of Dust and Rocks
Supernovas Shed Light on Dark Energy
Sun Flips Out to Flip-Flop
Technology and Engineering
Are Propellers Fin-ished?
Sugar Power for Cell Phones
Algae Motors
The Parts of Speech
Problems with Prepositions
Countable and Uncountable Nouns
What is a Verb?
Transportation
Troubles with Hubble
Revving Up Green Machines
Middle school science adventures
Weather
The solar system's biggest junkyard
Warmest Year on Record
Science loses out when ice caps melt
Add your Article

Not Slippery When Wet

A gecko has amazingly sticky feet (see "How a Gecko Defies Gravity"). In fact, if you pull hard enough on a gecko stuck to a glass plate, you might break the plate. A tree frog's foot doesn't have so powerful a grip, but it still must allow the frog to climb wet, slippery leaves—sometimes while the frog is upside down. Now, scientists have figured out how a tree frog manages to keep its grip. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A gecko's feet have inspired a new type of adhesive tape (see "Sticking Around with Gecko Tape"). If engineers can figure out how to imitate a tree frog's foot, we might someday have car tires that stick to the road even when the road's wet.—E. Jaffe

Not Slippery When Wet
Not Slippery When Wet








Designed and Powered by HBJamaica.com™