Agriculture
Silk’s superpowers
Protecting Cows—and People—from a Deadly Disease
Getting the dirt on carbon
Amphibians
Toads
Tree Frogs
Bullfrogs
Animals
Color-Changing Bugs
A Seabird's Endless Summer
Bee Heat Cooks Invaders
Behavior
Wake Up, Sleepy Gene
Contemplating thought
Wired for Math
Birds
Penguins
Cassowaries
Swans
Chemistry and Materials
Screaming for Ice Cream
Moon Crash, Splash
Smelly Traps for Lampreys
Computers
Programming with Alice
Hitting the redo button on evolution
Graphene's superstrength
Dinosaurs and Fossils
Fossil Forests
A Big, Weird Dino
An Ancient Spider's Web
E Learning Jamaica
Results of GSAT are in schools this week
2014 GSAT Results for Jamaican Kids
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
Earth
Wave of Destruction
Salty, Old and, Perhaps, a Sign of Early Life
Pollution at the ends of the Earth
Environment
Toxic Cleanups Get a Microbe Boost
Swimming with Sharks and Stingrays
Hazy with a Chance of Sunshine
Finding the Past
Early Maya Writing
Fakes in the museum
A Long Haul
Fish
Electric Ray
Marlin
White Tip Sharks
Food and Nutrition
Sponges' secret weapon
Eat Out, Eat Smart
Yummy bugs
GSAT English Rules
Whoever vs. Whomever
Pronouns
Capitalization Rules
GSAT Exam Preparation Jamaica
GSAT Practice Papers | GSAT Mathematics | Maths
How are students placed after passing the GSAT exam
March 21-22, 2013: Over 43,000 students will take the GSAT Exam
GSAT Exams Jamaica Scholarships
GSAT stars reap scholarship glory
GSAT Exam Preparation
GSAT Scholarship
GSAT Mathematics
Setting a Prime Number Record
Monkeys Count
It's a Math World for Animals
Human Body
From Stem Cell to Any Cell
The tell-tale bacteria
Football Scrapes and Nasty Infections
Invertebrates
Sponges
Walking Sticks
Butterflies
Mammals
Orangutans
Yaks
Gazelle
Parents
Expert report highlights the importance to parents of reading to children!
How children learn
Choosing a Preschool: What to Consider
Physics
The Particle Zoo
Echoes of a Stretched Egg
Project Music
Plants
Farms sprout in cities
Assembling the Tree of Life
Nature's Alphabet
Reptiles
Lizards
Copperhead Snakes
Komodo Dragons
Space and Astronomy
Zooming In on the Wild Sun
A Star's Belt of Dust and Rocks
No Fat Stars
Technology and Engineering
Smart Windows
Model Plane Flies the Atlantic
Weaving with Light
The Parts of Speech
What is a Noun
Problems with Prepositions
Pronouns
Transportation
Middle school science adventures
Are Propellers Fin-ished?
Seen on the Science Fair Scene
Weather
A Change in Climate
Arctic Melt
The Best Defense Is a Good Snow Fence
Add your Article

Math of the World

If you know where to look, you can find math anywhere you go. Math is not just in the numbers on a cash register or at a football game. It's in bathroom-tiling patterns, the shapes of clouds and trees, the arrangement of a flower's petals, a ball's path in a pinball game, the knots you tie in your shoelaces—and even in the way you lace your shoes. Ron Eglash has gone even farther. He's found math in beadwork, basket weaving, Navajo rugs, modern music, and even cornrow hairstyles. Eglash is a professor at Rensselaer Polytechnic Institute in Troy, N.Y. The best way to get students excited about math, Eglash says, is to apply it to things that they care about. With this goal in mind, he has created computer programs that reveal mathematical principles in everything from graffiti art and the architecture of African villages to Native American beadwork and Puerto Rican music. As students create and experiment, they learn math in a way that makes sense to them. "Kids already know the mathematics, but they know it in a form that isn't recognized in school," Eglash says. "We're getting kids to take something they already know in their hearts and hands and to use computers to translate that into the kind of math their schools understand." Fractal factor Eglash first noticed the link between culture and math when he saw photographs of Africa taken from airplanes. Huts in many villages, he noted, are built in circles of circles of circles, or in rectangles of rectangles of rectangles. In math, a pattern that repeats itself on different scales is called a fractal. In a fractal object, each smaller structure is a miniature copy of the larger form. Fractals often appear in nature. A tree, for instance, has branches that split into branches that split into more branches, and so on. The rules that underlie fractals are simple. But the resulting patterns can be complex (see "Creating a Fractal Snowflake," below). The people who live in fractal-based villages in Africa use math to reflect spiritual concepts, Eglash says. They believe that life is a never-ending cycle and that our ancestors are always with us. Repeating patterns can also represent the desire for unending health or wealth. Eglash found fractals not only in village design but also in African sculptures, textiles, and other art forms. Four points Math and culture work together in other places, Eglash says. Many Native American groups, for instance, find meaning in four points that mirror each other, whether there be four directions, winds, colors, or mountains. Such four-point symmetry appears in these people's beadwork, tepee construction, buffalo-hide drum decorations, sand paintings, and more. In the eyes of a mathematician, these patterns belong to something called the Cartesian coordinate system. The images fit onto graphs with an x-axis and a y-axis, where each point on the graph is given by two numbers, or coordinates. And there are sets of rules, called algorithms, that tell you how draw these shapes step by step on graph paper (or a computer screen). Using Eglash's Virtual Bead Loom program, you can experiment with the Cartesian coordinate system to make your own beautiful works of art. You can also try the Graffiti Grapher, Navajo Rug Weaver, and Alaskan Basket Weaver, all based on the same concept. Drumbeats and cornrows Among Eglash's other creations is a program called Rhythm Wheels. It challenges kids to figure out when two repeating sets of drumbeats, each going at its own pace, will meet. As they work with this program, kids learn about fractions and finding the least common denominator. Cornrow Curves, another program, teaches transformational geometry. Students work with repeating patterns and changes in scale to create new hairstyles. Eglash can't look anywhere without seeing a math lesson just waiting to be taught. His newest program, still under construction, uses a break-dancing robot to explain angles involved in three-dimensional movement around an axis. Eglash's math programs are popular with students. According to recent studies, a group of mostly minority kids felt better about computers after using them. And a group of mostly Latin American students improved their math grades after using the tools. Math appreciation In Native American communities, elders appreciate the lessons, too, because kids learn about the history of their people. In fact, each of Eglash's programs includes information about the culture, history, and math involved. Once parents and grandparents consider schoolwork to be culturally valuable, they become more likely to encourage their kids to study, says Jim Barta. He's a professor at Utah State University in Logan. "Parents say, 'Wow, I wish I'd had teachers that taught me math that way. I might have liked it!'" Barta says. Ultimately, mixing math with culture could do more than help kids learn. It could also help them understand each other better. "Culture is usually a barrier to math," Eglash says. "We are using math as a bridge to culture."

Math of the World
Math of the World








Designed and Powered by HBJamaica.com™