Agriculture
New Gene Fights Potato Blight
Protecting Cows—and People—from a Deadly Disease
Growing Healthier Tomato Plants
Amphibians
Frogs and Toads
Salamanders and Newts
Tree Frogs
Animals
The Littlest Lemurs
A Sense of Danger
Navigating by the Light of the Moon
Behavior
Contemplating thought
A Grim Future for Some Killer Whales
The (kids') eyes have it
Birds
Finches
Macaws
Pheasants
Chemistry and Materials
Flytrap Machine
Spinning Clay into Cotton
Popping to Perfection
Computers
A New Look at Saturn's rings
Hitting the redo button on evolution
Small but WISE
Dinosaurs and Fossils
Watery Fate for Nature's Gliders
Big Fish in Ancient Waters
A Living Fossil
E Learning Jamaica
Results of GSAT are in schools this week
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
2014 GSAT Results for Jamaican Kids
Earth
Petrified Lightning
Rocking the House
Unnatural Disasters
Environment
Ready, unplug, drive
Eating Up Foul Sewage Smells
A Stormy History
Finding the Past
Little People Cause Big Surprise
Of Lice and Old Clothes
Childhood's Long History
Fish
Swordfish
Trout
Perches
Food and Nutrition
How Super Are Superfruits?
Making good, brown fat
In Search of the Perfect French Fry
GSAT English Rules
Subject and Verb Agreement
Whoever vs. Whomever
Capitalization Rules
GSAT Exam Preparation Jamaica
How are students placed after passing the GSAT exam
The Annual GSAT Scholarships
42,000 students will sit for the GSAT Exam in two weeks
GSAT Exams Jamaica Scholarships
GSAT Exam Preparation
Access denied - Disabled boy aces GSAT
Results of GSAT are in schools this week
GSAT Mathematics
Secrets of an Ancient Computer
How a Venus Flytrap Snaps Shut
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
Human Body
Sea Kids See Clearly Underwater
Speedy Gene Gives Runners a Boost
Heart Revival
Invertebrates
Arachnids
Butterflies
Corals
Mammals
Black Bear
Miscellaneous Mammals
Pekingese
Parents
How children learn
Expert report highlights the importance to parents of reading to children!
Children and Media
Physics
The Mirror Universe of Antimatter
IceCube Science
One ring around them all
Plants
Cactus Goo for Clean Water
A Giant Flower's New Family
Bright Blooms That Glow
Reptiles
Garter Snakes
Snapping Turtles
Snakes
Space and Astronomy
Return to Space
Burst Busters
Galaxies Divide Sharply Along Color Lines
Technology and Engineering
Space Umbrellas to Shield Earth
Morphing a Wing to Save Fuel
Sugar Power for Cell Phones
The Parts of Speech
Pronouns
Problems with Prepositions
What is a Preposition?
Transportation
Tinkering With the Basic Bike
Robots on the Road, Again
Are Propellers Fin-ished?
Weather
Antarctica warms, which threatens penguins
A Change in Climate
In Antarctica watch the heat (and your step)
Add your Article

Math of the World

If you know where to look, you can find math anywhere you go. Math is not just in the numbers on a cash register or at a football game. It's in bathroom-tiling patterns, the shapes of clouds and trees, the arrangement of a flower's petals, a ball's path in a pinball game, the knots you tie in your shoelaces—and even in the way you lace your shoes. Ron Eglash has gone even farther. He's found math in beadwork, basket weaving, Navajo rugs, modern music, and even cornrow hairstyles. Eglash is a professor at Rensselaer Polytechnic Institute in Troy, N.Y. The best way to get students excited about math, Eglash says, is to apply it to things that they care about. With this goal in mind, he has created computer programs that reveal mathematical principles in everything from graffiti art and the architecture of African villages to Native American beadwork and Puerto Rican music. As students create and experiment, they learn math in a way that makes sense to them. "Kids already know the mathematics, but they know it in a form that isn't recognized in school," Eglash says. "We're getting kids to take something they already know in their hearts and hands and to use computers to translate that into the kind of math their schools understand." Fractal factor Eglash first noticed the link between culture and math when he saw photographs of Africa taken from airplanes. Huts in many villages, he noted, are built in circles of circles of circles, or in rectangles of rectangles of rectangles. In math, a pattern that repeats itself on different scales is called a fractal. In a fractal object, each smaller structure is a miniature copy of the larger form. Fractals often appear in nature. A tree, for instance, has branches that split into branches that split into more branches, and so on. The rules that underlie fractals are simple. But the resulting patterns can be complex (see "Creating a Fractal Snowflake," below). The people who live in fractal-based villages in Africa use math to reflect spiritual concepts, Eglash says. They believe that life is a never-ending cycle and that our ancestors are always with us. Repeating patterns can also represent the desire for unending health or wealth. Eglash found fractals not only in village design but also in African sculptures, textiles, and other art forms. Four points Math and culture work together in other places, Eglash says. Many Native American groups, for instance, find meaning in four points that mirror each other, whether there be four directions, winds, colors, or mountains. Such four-point symmetry appears in these people's beadwork, tepee construction, buffalo-hide drum decorations, sand paintings, and more. In the eyes of a mathematician, these patterns belong to something called the Cartesian coordinate system. The images fit onto graphs with an x-axis and a y-axis, where each point on the graph is given by two numbers, or coordinates. And there are sets of rules, called algorithms, that tell you how draw these shapes step by step on graph paper (or a computer screen). Using Eglash's Virtual Bead Loom program, you can experiment with the Cartesian coordinate system to make your own beautiful works of art. You can also try the Graffiti Grapher, Navajo Rug Weaver, and Alaskan Basket Weaver, all based on the same concept. Drumbeats and cornrows Among Eglash's other creations is a program called Rhythm Wheels. It challenges kids to figure out when two repeating sets of drumbeats, each going at its own pace, will meet. As they work with this program, kids learn about fractions and finding the least common denominator. Cornrow Curves, another program, teaches transformational geometry. Students work with repeating patterns and changes in scale to create new hairstyles. Eglash can't look anywhere without seeing a math lesson just waiting to be taught. His newest program, still under construction, uses a break-dancing robot to explain angles involved in three-dimensional movement around an axis. Eglash's math programs are popular with students. According to recent studies, a group of mostly minority kids felt better about computers after using them. And a group of mostly Latin American students improved their math grades after using the tools. Math appreciation In Native American communities, elders appreciate the lessons, too, because kids learn about the history of their people. In fact, each of Eglash's programs includes information about the culture, history, and math involved. Once parents and grandparents consider schoolwork to be culturally valuable, they become more likely to encourage their kids to study, says Jim Barta. He's a professor at Utah State University in Logan. "Parents say, 'Wow, I wish I'd had teachers that taught me math that way. I might have liked it!'" Barta says. Ultimately, mixing math with culture could do more than help kids learn. It could also help them understand each other better. "Culture is usually a barrier to math," Eglash says. "We are using math as a bridge to culture."

Math of the World
Math of the World








Designed and Powered by HBJamaica.com™