Agriculture
Fast-flying fungal spores
Flush-Free Fertilizer
Making the most of a meal
Amphibians
Salamanders
Bullfrogs
Newts
Animals
A Fallout Feast for Crabs
Sleepless at Sea
Polly Shouldn't Get a Cracker
Behavior
Making Sense of Scents
Fighting fat with fat
A Recipe for Happiness
Birds
Woodpecker
Kookaburras
Storks
Chemistry and Materials
Screaming for Ice Cream
Earth from the inside out
A New Basketball Gets Slick
Computers
Seen on the Science Fair Scene
Batteries built by Viruses
Graphene's superstrength
Dinosaurs and Fossils
Dino-bite!
Did Dinosaurs Do Handstands?
The bug that may have killed a dinosaur
E Learning Jamaica
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
Results of GSAT are in schools this week
2014 GSAT Results for Jamaican Kids
Earth
Sky Dust Keeps Falling on Your Head
Pollution at the ends of the Earth
A Volcano's Deadly Ash
Environment
The Oily Gulf
Toxic Cleanups Get a Microbe Boost
Catching Some Rays
Finding the Past
Words of the Distant Past
Settling the Americas
Meet your mysterious relative
Fish
Bass
Catfish
Pygmy Sharks
Food and Nutrition
Sponges' secret weapon
In Search of the Perfect French Fry
Yummy bugs
GSAT English Rules
Order of Adjectives
Who vs. That vs. Which
Pronouns
GSAT Exam Preparation Jamaica
Mastering The GSAT Exam
GSAT Practice Papers | GSAT Mathematics | Maths
Ministry of Education Announces 82 GSAT Scholarships for 2010
GSAT Exams Jamaica Scholarships
Results of GSAT are in schools this week
GSAT Exam Preparation
GSAT Scholarship
GSAT Mathematics
Play for Science
Secrets of an Ancient Computer
GSAT Mathematics Quiz, Teaching Math, teaching anxiety
Human Body
Dreaming makes perfect
Cell Phone Tattlers
Sun Screen
Invertebrates
Giant Squid
Roundworms
Arachnids
Mammals
Platypus
Porcupines
Wolverines
Parents
How children learn
Raise a Lifelong Reader by Reading Aloud
What Not to Say to Emerging Readers
Physics
Thinner Air, Less Splatter
Einstein's Skateboard
Gaining a Swift Lift
Plants
Surprise Visitor
Farms sprout in cities
Bright Blooms That Glow
Reptiles
Turtles
Chameleons
Copperhead Snakes
Space and Astronomy
Ready, Set, Supernova
Cousin Earth
Witnessing a Rare Venus Eclipse
Technology and Engineering
Dancing with Robots
A Satellite of Your Own
A Clean Getaway
The Parts of Speech
What is a Noun
Pronouns
Adjectives and Adverbs
Transportation
Robots on a Rocky Road
Seen on the Science Fair Scene
Are Propellers Fin-ished?
Weather
The solar system's biggest junkyard
Warmest Year on Record
Watering the Air
Add your Article

Ants on Stilts

If you want to know how far you've walked, you can choose among several strategies. You can measure your route on a map. You can wear a handy gadget, such as a GPS device that calculates distances or a pedometer that counts your steps. Or you can ask someone who already knows the answer. It turns out that people aren't the only animals with distance-measuring skills. Certain ants have a built-in pedometer that tells them how far it is from here to there. If you want to know how far you've walked, you can choose among several strategies. You can measure your route on a map. You can wear a handy gadget, such as a GPS device that calculates distances or a pedometer that counts your steps. Or you can ask someone who already knows the answer. It turns out that people aren't the only animals with distance-measuring skills. Certain ants have a built-in pedometer that tells them how far it is from here to there. If you want to know how far you've walked, you can choose among several strategies. You can measure your route on a map. You can wear a handy gadget, such as a GPS device that calculates distances or a pedometer that counts your steps. Or you can ask someone who already knows the answer. It turns out that people aren't the only animals with distance-measuring skills. Certain ants have a built-in pedometer that tells them how far it is from here to there. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Then, they put the ants on a runway next to the one they had used for practice. The ants picked up where they left off—grabbing crumbs and heading back home. Their new limbs tricked the ants, however. Those with clipped legs started looking for the nest after walking only 6 meters (20 feet), instead of the usual 10 meters (33 feet). The ants with lengthened legs scurried for 15 meters (49 feet) before looking for home. Then, they put the ants on a runway next to the one they had used for practice. The ants picked up where they left off—grabbing crumbs and heading back home. Their new limbs tricked the ants, however. Those with clipped legs started looking for the nest after walking only 6 meters (20 feet), instead of the usual 10 meters (33 feet). The ants with lengthened legs scurried for 15 meters (49 feet) before looking for home. Then, they put the ants on a runway next to the one they had used for practice. The ants picked up where they left off—grabbing crumbs and heading back home. Their new limbs tricked the ants, however. Those with clipped legs started looking for the nest after walking only 6 meters (20 feet), instead of the usual 10 meters (33 feet). The ants with lengthened legs scurried for 15 meters (49 feet) before looking for home. Then, they put the ants on a runway next to the one they had used for practice. The ants picked up where they left off—grabbing crumbs and heading back home.It appeared, the scientists say, that the ants were using the number of steps they took, not the actual distance traveled, to gauge how far they had gone. After a few days with their new legs, however, the ants seemed to reset their pedometers. Their sense of distance was once again restored.—E. Sohn Their new limbs tricked the ants, however. Those with clipped legs started looking for the nest after walking only 6 meters (20 feet), instead of the usual 10 meters (33 feet). The ants with lengthened legs scurried for 15 meters (49 feet) before looking for home.

Ants on Stilts
Ants on Stilts








Designed and Powered by HBJamaica.com™