Agriculture
Middle school science adventures
Hungry bug seeks hot meal
Growing Healthier Tomato Plants
Amphibians
Salamanders and Newts
Tree Frogs
Newts
Animals
Sea Giants and Island Pygmies
Not Slippery When Wet
Lives of a Mole Rat
Behavior
Swedish Rhapsody
How Much Babies Know
Pondering the puzzling platypus
Birds
Ibises
Geese
Birds We Eat
Chemistry and Materials
Toxic Dirt + Avian Flu = Science Fair Success
Butterfly Wings and Waterproof Coats
Picture the Smell
Computers
Earth from the inside out
Programming with Alice
The Shape of the Internet
Dinosaurs and Fossils
Dinosaur Eggs-citement
Some Dinos Dined on Grass
Have shell, will travel
E Learning Jamaica
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
2014 GSAT Results for Jamaican Kids
Results of GSAT are in schools this week
Earth
Vitamin D-licious Mushrooms
Wave of Destruction
Less Mixing Can Affect Lake's Ecosystem
Environment
Will Climate Change Depose Monarchs?
A 'Book' on Every Living Thing
Pollution Detective
Finding the Past
Traces of Ancient Campfires
Early Maya Writing
The Taming of the Cat
Fish
Electric Ray
Parrotfish
Piranha
Food and Nutrition
Turning to Sweets, Fats to Calm the Brain
Sponges' secret weapon
Eat Out, Eat Smart
GSAT English Rules
Adjectives and Adverbs
Subject and Verb Agreement
Who vs. That vs. Which
GSAT Exam Preparation Jamaica
The Annual GSAT Scholarships
How are students placed after passing the GSAT exam
10 Common Mistakes When Preparing for the GSAT Math Test
GSAT Exams Jamaica Scholarships
42,000 students will sit for the GSAT Exam in two weeks
GSAT Practice Papers | GSAT Mathematics | Maths
Results of GSAT are in schools this week
GSAT Mathematics
GSAT Practice Papers | GSAT Mathematics | Maths
10 Common Mistakes When Preparing for the GSAT Math Test
How a Venus Flytrap Snaps Shut
Human Body
Opening a Channel for Tasting Salt
The tell-tale bacteria
Heavy Sleep
Invertebrates
Moths
Dragonflies
Oysters
Mammals
Ferrets
Bison
Ponies
Parents
Choosing a Preschool: What to Consider
Children and Media
Raise a Lifelong Reader by Reading Aloud
Physics
Einstein's Skateboard
Strange Universe: The Stuff of Darkness
Echoes of a Stretched Egg
Plants
City Trees Beat Country Trees
Underwater Jungles
Bright Blooms That Glow
Reptiles
Black Mamba
Rattlesnakes
Chameleons
Space and Astronomy
A Darker, Warmer Red Planet
Killers from Outer Space
A Very Distant Planet Says "Cheese"
Technology and Engineering
Machine Copy
Toy Challenge
Slip Sliming Away
The Parts of Speech
What is a Preposition?
What is a Verb?
Countable and Uncountable Nouns
Transportation
Troubles with Hubble
How to Fly Like a Bat
Where rivers run uphill
Weather
Warmest Year on Record
Weekend Weather Really Is Different
In Antarctica watch the heat (and your step)
Add your Article

Ants on Stilts

If you want to know how far you've walked, you can choose among several strategies. You can measure your route on a map. You can wear a handy gadget, such as a GPS device that calculates distances or a pedometer that counts your steps. Or you can ask someone who already knows the answer. It turns out that people aren't the only animals with distance-measuring skills. Certain ants have a built-in pedometer that tells them how far it is from here to there. If you want to know how far you've walked, you can choose among several strategies. You can measure your route on a map. You can wear a handy gadget, such as a GPS device that calculates distances or a pedometer that counts your steps. Or you can ask someone who already knows the answer. It turns out that people aren't the only animals with distance-measuring skills. Certain ants have a built-in pedometer that tells them how far it is from here to there. If you want to know how far you've walked, you can choose among several strategies. You can measure your route on a map. You can wear a handy gadget, such as a GPS device that calculates distances or a pedometer that counts your steps. Or you can ask someone who already knows the answer. It turns out that people aren't the only animals with distance-measuring skills. Certain ants have a built-in pedometer that tells them how far it is from here to there. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Scientists from the University of Ulm in Germany studied an African ant called Cataglyphis fortis. These ants live in the Sahara desert, where they zigzag around until they find food. After they find something to eat, the insects take a more direct route home. Previous research had found that these ants use the position of the sun and light in the sky to figure out which way to go. Scientists had also proposed that the ants might measure distance based on the length of their strides. The German researchers were the first to test this idea. In Tunisia, a country in Africa, they trained ants to run between a nest and a feeder along a 10-meter-long (33-foot-long) runway. After the ants had learned the route, the scientists captured some of the crawly creatures at the feeder. They trimmed some of the ants' legs to make their strides shorter. They glued on bristles to make the legs of other ants longer. Then, they put the ants on a runway next to the one they had used for practice. The ants picked up where they left off—grabbing crumbs and heading back home. Their new limbs tricked the ants, however. Those with clipped legs started looking for the nest after walking only 6 meters (20 feet), instead of the usual 10 meters (33 feet). The ants with lengthened legs scurried for 15 meters (49 feet) before looking for home. Then, they put the ants on a runway next to the one they had used for practice. The ants picked up where they left off—grabbing crumbs and heading back home. Their new limbs tricked the ants, however. Those with clipped legs started looking for the nest after walking only 6 meters (20 feet), instead of the usual 10 meters (33 feet). The ants with lengthened legs scurried for 15 meters (49 feet) before looking for home. Then, they put the ants on a runway next to the one they had used for practice. The ants picked up where they left off—grabbing crumbs and heading back home. Their new limbs tricked the ants, however. Those with clipped legs started looking for the nest after walking only 6 meters (20 feet), instead of the usual 10 meters (33 feet). The ants with lengthened legs scurried for 15 meters (49 feet) before looking for home. Then, they put the ants on a runway next to the one they had used for practice. The ants picked up where they left off—grabbing crumbs and heading back home.It appeared, the scientists say, that the ants were using the number of steps they took, not the actual distance traveled, to gauge how far they had gone. After a few days with their new legs, however, the ants seemed to reset their pedometers. Their sense of distance was once again restored.—E. Sohn Their new limbs tricked the ants, however. Those with clipped legs started looking for the nest after walking only 6 meters (20 feet), instead of the usual 10 meters (33 feet). The ants with lengthened legs scurried for 15 meters (49 feet) before looking for home.

Ants on Stilts
Ants on Stilts








Designed and Powered by HBJamaica.com™